187 research outputs found

    Confidential database-as-a-service approaches: taxonomy and survey

    Get PDF
    Outsourcing data to external providers has gained momentum with the advent of cloud computing. Encryption allows data confidentiality to be preserved when outsourcing data to untrusted external providers that may be compromised by attackers. However, encryption has to be applied in a way that still allows the external provider to evaluate queries received from the client. Even though confidential database-as-a-service (DaaS) is still an active field of research, various techniques already address this problem, which we call confidentiality preserving indexing approaches (CPIs). CPIs make individual tradeoffs between the functionality provided, i.e., the types of queries that can be evaluated, the level of protection achieved, and performance.In this paper, we present a taxonomy of requirements that CPIs have to satisfy in deployment scenarios including the required functionality and the required level of protection against various attackers. We show that the taxonomy?s underlying principles serve as a methodology to assess CPIs, primarily by linking attacker models to CPI security properties. By use of this methodology, we survey and assess ten previously proposed CPIs. The resulting CPI catalog can help the reader who would like to build DaaS solutions to facilitate DaaS design decisions while the proposed taxonomy and methodology can also be applied to assess upcoming CPI approaches

    Frequency dependency of temporal contrast adaptation in normal subjects

    Get PDF
    AbstractThe aim of this study was to determine the influence of temporal frequency of temporal contrast adaptation on contrast sensitivity in healthy subjects. Temporal contrast sensitivities (TCS) were measured monocularly in seven healthy subjects with a modified ERG full-field bowl stimulator at eight different test temporal frequencies (9, 15, 20, 25, 31, 37, 44, 51Hz) using a two-alternative-forced-choice strategy. Before each presentation of the test stimulus, a 100% contrast adapting flicker stimulus was presented (frequencies: 9, 15, 20, 25, 31, 37, 44, 51, 100Hz). At each adapting frequency, a complete set of TCSs was measured. All temporal contrast sensitivities decreased with increasing temporal frequencies. Adaptation led to a general temporal contrast sensitivity decrease. Largest adaptation effects were seen at an adaptation frequency of 25Hz. Reduction of contrast sensitivity was significantly larger at 25Hz adaptation than at 9Hz adaptation (t-test of paired samples, Bonferroni corrected). The results of this study showed a general TCS decrease with the largest effect at an adaptation frequency of 25Hz. This finding indicates that the contrast adaptation probably occurred in the magnocellular-pathway. In future clinical studies adaptation effects could be investigated in patients with reduced temporal contrast sensitivity

    Temporal contrast sensitivity: A potential parameter for glaucoma progression, especially in advanced stages

    Get PDF
    INTRODUCTION. Previously it could be shown that temporal contrast sensitivity is affected by glaucoma and maximally influenced after 25-Hz adaptation in normals. This study investigated different kinds of 25-Hz temporal contrast adaptation on TCS in patients with ocular hypertension, preperimetric primary open-angle glaucoma, and perimetric open-angle glaucoma. Additionally, correlations of measured data with parameters of glaucoma diagnostic were done and assessed for the potential use of TCS as a parameter for glaucoma progression. MATERIALS AND METHODS. One hundred and four subjects were included: 44 normals, 14 ocular hypertensions, 11 preperimetric primary open-angle glaucomas, and 35 perimetric open-angle glaucomas. Using the Erlangen Flicker Test, temporal contrast sensitivity was measured without adaptation, after pre-adaptation and after pre- and re-adaptations at 25 Hz. Reliability analyses were done. RESULTS. All test strategies showed high reliability (a-Cronbach’s > 0.86). In normals, age-dependency of temporal contrast sensitivity without adaptation (p = 0.052) and after pre- and re-adaptation (p = 0.008) was observed. Temporal contrast sensitivity is significantly reduced after pre-adaptation for all subjects (p < 0.001). Reduction of temporal contrast sensitivity after pre- and re-adaptations was significant in all groups (p < 0.001), but it was smaller than after single pre-adaptation (p < 0.001). Temporal contrast sensitivity without adaptation was significantly reduced in patients with perimetric glaucoma (p = 0.040) but not in patients with ocular hypertension and preperimetric glaucoma. Correlation analyses yielded a significant correlation between temporal contrast sensitivity without adaptation and mean defect (p = 0.003, r = –0.329), loss variance (p = 0.027, r = –0.256), and retinal nerve fibre layer thickness (p < 0.001, r = 0.413) for all subjects and between temporal contrast sensitivity after pre-adaptation and mean defect (p = 0.045, r = –0.239). CONCLUSIONS. Temporal contrast sensitivity seems to be affected in perimetric glaucoma with an overall reduction after adaptation. Significant correlations of temporal contrast sensitivity with perimetric and morphologic parameters offer new aspects of its potential use as a glaucoma progressions marker, especially in advanced stages when perimetric diagnosis is limited

    The Interspersed Spin Boson Lattice Model

    Full text link
    We describe a family of lattice models that support a new class of quantum magnetism characterized by correlated spin and bosonic ordering [Phys. Rev. Lett. 112, 180405 (2014)]. We explore the full phase diagram of the model using Matrix-Product-State methods. Guided by these numerical results, we describe a modified variational ansatz to improve our analytic description of the groundstate at low boson frequencies. Additionally, we introduce an experimental protocol capable of inferring the low-energy excitations of the system by means of Fano scattering spectroscopy. Finally, we discuss the implementation and characterization of this model with current circuit-QED technology.Comment: Submitted to EPJ ST issue on "Novel Quantum Phases and Mesoscopic Physics in Quantum Gases

    Microsecond Time-Resolved Absorption Spectroscopy Used to Study CO Compounds of Cytochrome bd from Escherichia coli

    Get PDF
    Cytochrome bd is a tri-heme (b558, b595, d) respiratory oxygen reductase that is found in many bacteria including pathogenic species. It couples the electron transfer from quinol to O2 with generation of an electrochemical proton gradient. We examined photolysis and subsequent recombination of CO with isolated cytochrome bd from Escherichia coli in oneelectron reduced (MV) and fully reduced (R) states by microsecond time-resolved absorption spectroscopy at 532-nm excitation. Both Soret and visible band regions were examined. CO photodissociation from MV enzyme possibly causes fast (t,1.5 ms) electron transfer from heme d to heme b595 in a small fraction of the protein, not reported earlier. Then the electron migrates to heme b558 (t,16 ms). It returns from the b-hemes to heme d with t,180 ms. Unlike cytochrome bd in the R state, in MV enzyme the apparent contribution of absorbance changes associated with CO dissociation from heme d is small, if any. Photodissociation of CO from heme d in MV enzyme is suggested to be accompanied by the binding of an internal ligand (L) at the opposite side of the heme. CO recombines with heme d (t,16 ms) yielding a transient hexacoordinate state (CO-Fe2+ -L). Then the ligand slowly (t,30 ms) dissociates from heme d. Recombination of CO with a reduced heme b in a fraction of the MV sample may also contribute to the 30-ms phase. In R enzyme, CO recombines to heme d (t,20 ms), some heme b558 (t,0.2–3 ms), and finally migrates from heme d to heme b595 (t,24 ms) in ,5% of the enzyme population. Data are consistent with the recent nanosecond study of Rappaport et al. conducted on the membranes at 640-nm excitation but limited to the Soret band. The additional phases were revealed due to differences in excitation and other experimental conditions
    corecore